North-Central MEPDG User Group February 19, 2008

MEPDG Overview & National Perspective (My Perspective)

Harold L. Von Quintus, P.E.

Outline

- 1. The Beginning
- 2. Local Implementation Efforts
- 3. Integration of MEPDG into Practice
- 4. Enhancements
- 5. Summary

Should we wait until its **PERFECT**?

AASHTO Guide

- 1958; Road Test initiated
- 1962; AASHO Road Test complete
- 1972; Interim Design Guide
- 1986; Update
- 1993; Update
- 2007; still not perfect.

45

<u>MEPDG</u>

- 1989; LTPP initiated
- 1998; MEPDG initiated
- 2007; MEPDG delivered

Should we wait until its PERFECT?

- If we wait until there are no more changes, we will never use it.
- If we wait for perfection, it will be impractical and cost will restrict its use.

There is <u>NO</u> perfect procedure & it will never be perfect!

Remember where we are coming from, as you use the MEPDG!

- Assumptions used in the Design Guides?
- Calibration of both Design Guides?
- Error in the service life predictions of both Design Guides?

Outline

1. The Beginning

2. Local Implementation Efforts

- 3. Integration of MEPDG into Practice
- 4. Enhancements
- 5. Summary

FHWA Summary of Agency **Plans**

100

80

Yes

< Design Life

Does Agency Have Implementation Plan?

Expanding the Realm of Possibility

> Design Life

Equals Design

Life

Efforts to Implement **MEPDG** 2007

MEPDG Global Calibration

Why Local Calibration?

MEPDG – Local Validation/Calibration Tools Manual of Recommended Practice for Calibration of M-E Based Models

- 1. Confirming or adjusting the global calibration factors.
- 2. Detailed and practical guide to complete local calibration.

NCHRP Project 1-40B

MEPDG Software Itself

APPLIED REFEARCH AMOCIATES, INC

13

Previous & On-Going Studies

- NCHRP 9-30 Experimental Plan for Calibration & Validation of HMA Performance Models for Mix & Structural Design.
- 2. NCHRP 9-30(001) Conduct Pre-Implementation Studies & Database Enhancement.
- NCHRP 1-40D A review of the M-E PDG software & prediction methodology; & Correcting errors/blunders in the software.
- **4.** NCHRP 1-40B Local Calibration for the Recommended Guide for M-E Design of New and Rehabilitated Pavement Structures.

Previous & On-Going Studies

- Calibration Documents:
 - NCHRP Digest 284, December 2003; Refining the Calibration & Validation of HMA Performance Models: An Experimental Plan and Database.
 - NCHRP Digest 283, December 2003; Jackknife Testing – An Experimental Approach to Refine Model Calibration and Validation.
- FHWA: Use of PMS data for local calibration.
- FHWA: Use of deflection basin data in the MEPDG.

Outline

- 1. The Beginning
- 2. Local Implementation Efforts
- 3. Integration of MEPDG into Practice
- 4. Enhancements
- 5. Summary

Integration into Practice

- A Major Issue The Unknowns!!
- Determination of properties & other inputs.
- Factors affecting properties needed for design!!!!
 - Source of Materials
 - Contractor
 - Construction Equipment

 How do I get
 this input level 1 or 2 for design?

Data Integration: Effective use of available but limited local resources.

Structural – Mix Design Compatibility

Mixture design & material specifications determine the inputs.

NCHRP

This software is for review only and should not be used for design This software was developed under NCHRP 1-37A and 1-40D.

QUARTZITE N=.60 TOP SIZE AGG. - 3/4

Data Integration into Practice

Develop Designs

- Low-bid; optimize on design features
- Alternate bids;
 establish equivalent designs
- Design-build & warranties; optimize on performance

Establish Specification Limits

- Quality Assurance
- Performance-Related
- End-Result

Outline

- 1. The Beginning
- 2. Local Implementation Efforts
- 3. Integration of MEPDG into Practice
- 4. Enhancements
- 5. Summary

Enhancements: Global & Local

<u>Global</u>

- Distress prediction equations or transfer functions
- Revisions to the software;
 functionality
- Add additional distresses

Local or Regional

- Revisions to the default values
- Revisions to the transfer function and calibration coefficients
- $\sqrt{}$ Build libraries of inputs

NCHRP Project 1-40B Local Calibration Guide

Previous & On-Going Studies

- 1. NCHRP 1-40A Independent Review, prioritize the modifications.
- 2. NCHRP 9-30A Calibration of Rutting Models for HMA Structural and Mix Design.
- 3. NCHRP 9-42 Top-Down Cracking of HMA.
- 4. Reflection Cracking of HMA Overlays.
- 5. NCHRP 9-44 Application of the Endurance Limit for HMA Mixes.

New Construction Design Strategies

Included:

- Conventional flexible pavements
- Deep strength
- Full depth

Excluded:

- Aggregate surfaced roadways
- Semi-rigid pavements
- Staged construction
- Asphalt treated permeable base
- Geogrids, fabrics, & other strengthening materials

Rehabilitation Strategies

Included:

HMA overlays with & without milling

Excluded:

- Full depth reclamation
- Hot in place recycling
- Cold in place recycling
- Pavement preservation programs

Site Features Excluded from MEPDG

- Super single tires or single tires.
- Durability & mixture disintegration.
- Volume change in soils (frost heave or expansive soils).

Outline

- 1. The Beginning
- 2. Local Implementation Efforts
- 3. Integration of MEPDG into Practice
- 4. Enhancements

5. Summary

Summary

Implementation Considerations:

- Regional design features not included in global calibration.
- Regional defaults that are different from global defaults.
- Design criteria as compared to measured values included in calibration.

Summary

_ - ×

Value of Increased Costs & Time?

If improved performance/longer lasting pavements & reduced life cycle costs;

Then it is worth the effort, time, and cost!!

Assuming enforcement of specifications.

EXPANDING THE REALM OF POSSIBILITY

Thank you. Any Questions?

Questions!

Advanced Pavement Design

- Distress specific—defines what controls the design.
- Design features—considers many more design features and what effect they have on distress.
- Smoothness
- Construction defect effects.

Current Pavement Design Procedures

■ Flexible Pavements ■ Rigid Pavements

Agency Road Maps for: Implementing the MEPDG

Reliability

<u>1993 AASHTO</u>

 Based on traffic level; standard deviation of the design process & applied to traffic level.

<u>MEPDG</u>

Standard error for each distress prediction model & defined from calibration.

Carefully review and consider the standard errors of the distress prediction equations for application to low volume roadways.

Summary

Remember: The hierarchical input procedure allows a user to use the MEPDG with <u>NO</u> major investment.

Deciding on Design Inputs

- Communications within & between departments
- Traffic
- Materials
- Construction

Decision Factors

- 1. Cost of validation/calibration.
- 2. Value of potential improvement in prediction accuracy.
- 3. Cost/Value of design & construction.

Decision: Yes, validate & calibrate MEPDG to our local conditions!

Preparation of a M-E Design in a Low-Bid Process

Implementation Areas & Technology Transfer

- Training & communications within & between departments
- Traffic
- Materials
- Construction
- Calibration

Technology Transfer & Implementation Products

Remember Products:

- Management video
- Interactive CD for software
- Implementation notes
- Training course
- Guide text & appendices.

User's Manual in support of software.

Important Activities for Implementation

Training Courses:

- Determining inputs & using software
- Communication:
 - Departments need to know what information is needed & how it is used.
- Establish sensitivity of inputs to distress
- Identify problem areas to reduce frustration with software use

Global Calibration of Distress Transfer Functions Pavement Response

TRANSFER

FUNCTION

calibration.

- Stresses
- Strains
- Deflections

• Cracking

- Distortion
- Roughness

Local Calibration

A difficult & costly issue to resolve!

How close is close enough?

Expanding the Realm of Possibility

6/13/2000 8:28am

Outline of Recommended Practice for Local Calibration

- Introduction
- Scope of Document
- Referenced Documents
- Definition of Terms
- Significant of Use
- Defining Accuracy

- Standard Error Components
- Step-by-Step Procedure
- Revisions to calibration coefficier
- Demonst Studies

Validate/Calibrate MEPDG

- How many sites?
- Length of roadway segments?
- How many distress observations?
 - Multiple points within segment at any one point in time?
 - Multiple points over time?

Distress Data Sources

*LTPP

- Special Agency Test Sections
- ★PMIS Sections A quick check:
 - * Do the distress predictions match our local experience for traditional designs?
 - *What is the primary failure mode

triggering rehabilitation? NCHRP 9-30 Database for M-E Based Models

Calibration: Ease of Use

Calibration: Ease of Use

Calibration: Ease of Use

📁 Workshop User Manual

🕮 MEPDG Irvine-Calibr...

🟁 New JPCP - Mechani...

AOL Mail - Microsoft I...

Expanding the Realm of Possibility

🔇 🛜 9:35 AM

MEPDG Unique Feature

Local Validation/Calibration Hypotheses

- Mathematical models assumed to be correct.
 - * Pavement response models
 - * Climatic model ICM
 - * HMA aging/PCC strength time dependent model
- Statistical or empirical models (transfer functions) may result in bias.

* Revision of model coefficients to remove bias.

General Approach to Validation & Calibration of M-E Based Models

Traditional Split-Sample Approach
Jack-Knife Testing Approach

Validate/Calibrate MEPDG

What data do we use? LTPP/PMIS & other databases!!

- How many sites?
- Length of roadway segments?
- How many distress observations?
 - Multiple points within segment at any one point in time?
 - Multiple points over time?

Data Quality Review

What caused this increase in measured rutting?

Data Quality Review

Why are transverse cracking values so diverse?

Distress Data, Example:

Variability; A key data issue.

Example; Fatigue Cracking

Distress Data, Example:

Variability; A key data issue.

Example; Rut Depth

ARA

Distress Data Analyses: Within Project Variation: <u>Outliers</u>

◆ PMA Mix, Region 6, Route 6G, Both Directions, 2005

Limited area with significant different distress value within PMIS segment.

Distress Data Analyses: Within Project Variation; <u>Abrupt Change</u>

Sudden increase or decrease in distress value within PMIS segment.

Distress Data Analyses: Within Project Variation; <u>Drift</u>

Use segments w/consistent averages.

Consistent change in distress over project length, within PMIS segment.

Data Analyses: Bias & Residual Error from Validation/Calibration

Quantify the total error to answer this question!

Expanding the Realm of Possibility

Uses of PMIS Data for Validation/Calibration

- Identify factors/site features deviations or anomalies between performance observations.
- Identify bias between observations & predicted distresses for different design features & strategies.

Determination of the standard error – Probably NOT!

Pavement Management Systems Data - A Resource:

- Large time-series database on distress & pavement performance.
- Many dollars expended to develop PMIS and collect data.

Use of PMIS data for validation/calibration not a simple & quick process!!!!

In Summary

- Local validation/calibration:
- It's an important decision but it's your to make. 3

2

- *****Accuracy *****Costs
- Predicted IRI, m/km Manual of Recommended 0 **Practice for Calibrating** M-E Based Models.

3

2

Measured IRI, m/km

Material Testing - Equipment Purchased for Implementation Unbound Mtls. HMA PCC

- Montana No
- # Missouri No
- #Utah Yes

Montana - NoMissouri - Yes

PCC Most agencies have equip.

Testing – Lab Testing

- Build library of material properties
- Build library of default values

Questions for Establishing a Data Collection Plan

- 1. Is input parameter important for predicting distress?
- 2. Is the input parameter site/facility specific?
- 3. Can input parameter be easily/adequately measured?

Local Calibration Hypotheses

- Mathematical models assumed to be correct.
 - ***** Response models
 - * Climatic model ICM
 - * HMA aging/PCC strength time dependent model
- Statistical or empirical models (transfer functions) may result in bias.
 - * Revision of model coefficients to remove bias.

Steps for Local Calibration

1. Select hierarchical input Policy decision. level 2. Develop experimental Level of design & matrix confidence. 3. Determine sample size 1. LTPP sections 4. Identify roadway segments 2. Research sections 5. Collect & evaluate data 3. PMIS segments for anomalies 6. Conduct field **Testing & distress** definitions investigations

Steps for Local Calibration

- 7. Assess bias
- 8. Eliminate bias
- evaluate residual errors.
- 9. Assess standard error-
- 10.Improve model precision

Dispersion around line of equality

Execute MEPDG &

11.Interpretation of results& decide on adequacyof calibration factors

 $D(t)_{CI} = D_{\text{Predicted}} + e$

BUT, where does the error come from?

Observed Distress Value

Design Confidence Interval Concept

Quantifying the Prediction Error

 $e_{Total} = e_{Lack-of-Fit} + e_{Measurement}$

 $+ e_{Input} + e_{Pure}$

Objective:

 To streamline the design process using the MEPDG, & to verify and calibrate the distress prediction models or transfer function included in the MEPDG.

Distress Model Calibration Settings - Flexible New

Calibration Data Options

